2017 MATHS TALENT QUEST

WHAT IS A MATHS INVESTIGATION?
<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration Opens</td>
<td>Wednesday 26<sup>th</sup> April</td>
</tr>
<tr>
<td>Registration Closes</td>
<td>Friday 21 July</td>
</tr>
<tr>
<td>Delivery of entries at ECU</td>
<td>Monday 14<sup>th</sup> August</td>
</tr>
<tr>
<td>Judging of MTQ Entries</td>
<td>Tuesday 15<sup>th</sup> – Wednesday 16<sup>th</sup> August</td>
</tr>
<tr>
<td>State MTQ Ceremony (MAWA)</td>
<td>Saturday 9th September</td>
</tr>
<tr>
<td>National MTQ Awards Ceremony (MAV)</td>
<td>Thursday 19 October</td>
</tr>
</tbody>
</table>
WHAT IS A MATHS INVESTIGATION?

- An investigation may be defined as a situation originating in mathematics or the real world which lends itself to inquiry.

- A mathematics investigation allows students to examine situations using various techniques and in the process of their exploration, develop skills that can be applied to other problems.
WHY DO A MATHS INVESTIGATION?

- It caters for student diversity, investigative work being viewed as a key way to engage and motivate learners.

- Students need to formulate their own questions from a given situation. This process provides teachers with a clear indication of their level of knowledge and understanding of the topic.

- It requires students to use mathematical processes to understand the situation. It also allows students to generate first hand data.

- Students develop a systematic record of their own work rather than just an end product. Allows teachers to see the process incurred.
RELEVANCE OF THE AUSTRALIAN CURRICULUM & AUSVELS

- MTQ Projects and Investigations address all three Australian Curriculum content stands:
 - Number & Algebra, Measurement & Geometry, Statistics & Probability
- As well as ensures students work with the four Australian Curriculum proficiency stands:
 - Understanding, Fluency, Problem Solving and Reasoning
THE AUSTRALIAN CURRICULUM – CONTINUED

- The four proficiency strands reinforce the significance of working mathematically within the content and describe how the content is being explored or developed.

- The curriculum anticipates that schools will ensure all students benefit from access to the power of mathematical reasoning and learn to apply their mathematical understanding creatively & efficiently.

- Using mathematical skills across the curriculum both enriches the study of other learning areas and contributes to the development of a broader and deeper understanding of numeracy.

- It encourages teachers to help students become self-motivated, confident learners through enquiry and active participation in challenging and engaging experiences.
DEVELOPING YOUR INVESTIGATION – FIRST DECIDE

- **Who will be completing the investigation?**
 Class (maximum of 32 students), Group (maximum of 6 students) or an individual. Those completing their investigation in a group or class setting, consider creating smaller groups (writers group, research group, calculator group) and assigning specific tasks.

- **What will the investigation be?**
 A home investigation, a school investigation or a combination of both.

- **Which investigations will be entered into the competition?**
 Each school investigation will be entered or our own school judging will occur to decide. Please note that a maximum of 8 entries per year level will be accepted for state judging. Some schools host a school expo to display their students work to parents and students.
GETTING STARTED

- Use mind mapping, brainstorming and lateral thinking.
- Brainstorm ideas and inspiration for investigation.
- Generate ideas for topic and related mathematical content.
- Select a topic and outline investigation content.
- Ensure acquisition and management of resources.
- Develop a plan/timeline and consider presentation format.
MATHS TALENT QUEST

EXAMPLE OF A MATHS TALENT QUEST PLAN

Names

Presentation format

Aim

Add to this as you go.

How you are going to manage the organisation of your group or class?
MATHS TALENT QUEST

EXAMPLE OF A MATHS TALENT QUEST TIMELINE

Week 5 (Starting June 4) – Putting Together
- Answer Key Questions 5 & 6 in full.
- Continue to develop Visual Impact Presentation.
- Share what new Maths findings you discovered this week whilst working on your Project. Record this in your Journal.
- One on one conference with your Teacher or Mentor.

Week 6 (Starting June 11) – Putting Together
- Answer any remaining Key Questions in full.
- Continue to develop Visual Impact Presentation.
- Share what new Maths findings you discovered this week whilst working on your Project. Record this in your Journal.
- One on one conference with your Teacher or Mentor.

Week 7 (Starting June 18) – Complete Presentation
- Complete Visual Impact Presentation.
- Share what new Maths findings you discovered this week whilst working on your Project. Record this in your Journal.
- One on one conference with your Teacher or Mentor.

Week 8 (Starting June 25) – Assemble Whole Project
- Bring all work pieces and Visual Impact Presentation together.
- Complete Journal.
- One on one conference with your Teacher or Mentor.

Week 9 (Starting July 16) – Complete Acknowledgement Forms & Appendices
- Complete acknowledgement forms, including all the contributions of others to your Project.
- Complete package of all workings sheets in a plastic pocket/folder attached. This is part of your appendices.
- Complete weekly Journal.
- One on one conference with your Teacher or Mentor.
A question becomes a problem if the procedure or method of solution is not immediately known, but requires you to apply creativity and previous knowledge in new and unfamiliar situations. If the procedure or solution is obvious then it is not a problem but an exercise.
INVESTIGATION STEPS – CONTINUED

1. **See** – Understanding the problem
2. **Plan** – Deciding on a strategy or plan
3. **Do** – Solving the problem
4. **Check** – Checking your results
1. SEE – Understanding the Problem

- Identify the problem you want to answer
- Read the problem carefully
- Pick out various parts of the problem

QUESTIONS TO CONSIDER

- What is the problem asking me?
- Are there any words I don’t understand?
 - What do I already know?
 - What am I trying to do?
2. PLAN – Deciding on a Strategy or Plan

- Gather together all available information
- Make some predictions or guesses
- Think about the different strategies you may use
- Decide what strategies will suit your problem
- Write down your plan

QUESTIONS TO CONSIDER

- How am I going to solve the problem?
- Have I seen a similar problem before?
 - How can the known help me with the unknown?
 - Can I restate the problem?
STRATEGIES FOR SOLVING UNFAMILIAR PROBLEMS

- Trial and error
- Guessing, checking and improving
- Gathering data
- Drawings, diagrams and graphs
- Working backwards
- Looking for patterns
- Writing an equation
- Using a formula
- Simplifying the problem
- Comparing with similar problems
- Elimination of possibilities
- Using a list, table, materials and models
- Acting it out
- Test conjecture
3. DO – Solving the Problem

- Work through one step at a time
- Complete each step carefully
- Explain and show how you reach your answer
- Reflect on where you are at
- Rethink and modify your strategies as needed
- Create a new plan if necessary

QUESTIONS TO CONSIDER

- What do I do next?
- Have I proved I am correct?
- Do I continue with my plan?
- Is my plan working?
- Do I need to change my plan?
MATHEMATICAL PROCESSES THAT CAN BE USED

- Questioning
- Generalising
- Exploring
- Collecting Data
- Analysing
- Predicting
- Reflecting
- Hypothesising
- Comparing
- Classifying
- Justifying
- Interpreting
- Proving
- Experimenting
- Estimating
4. CHECK – Checking your Results

- Think carefully and examine your answer
- Write your answer in complete sentences

QUESTIONS TO CONSIDER
- How can I check my result?
- Have I used all the important information?
- Does the answer make sense?
- Does it answer the whole problem?

REFLECTIONS AND SELF ASSESSMENT
- How could the problem relate to other problems?
- Is there another strategy I could use to get the answer?
- How can I use this method to solve further problems?
REFLECTION QUESTIONS AND STATEMENTS

- I have learnt …
- I have found …
- I have discovered …
- I now need to ….
- Today I/ Tomorrow I …
- Something new …
- Something challenging …
- Further thoughts …
- Can I check this another way?
- What happens if?
- How many solutions?
- What else can I learn from this?
GRADE FOUR REFLECTION OF LEARNING

Looking back on all we did!
Using our brains!

Problem Solving
Following a plan
Understanding the problem
Breaking a problem into smaller pieces

Maths Talent Quest
Grade Four
Reflection of Learning
EXAMPLE OF A SELF ASSESSMENT / REFLECTION
JUDGING RUBRIC

- The Judging Rubric can be downloaded from The MAV website

- Please note the 2015 Judging Rubric is currently being revised, the 2016 rubric will be available in the beginning of Term Two.
- WA
MATHSTALENTQUEST

FURTHER RESOURCES AVAILABLE AT:
www.mathematicscentre.com
“Mathematics is not a careful march down a well cleared highway, but a journey into a strange wilderness, where the explorers often get lost and discover more than they thought possible”

W. S. Anglin
FURTHER INFORMATION

- Please visit the MAWA website to download additional documents

- Attend an MTQ Professional Development workshop – dates can be found at above link

- Contact Student Activities
 MAWA Committee: Donna Buckley (donna.buckley@education.wa.edu.au)
 Dr Jack Bana (j.bana@bigpond.net.au)
 MAWA President Rom Cirillo (rcirillo@bigpond.net.au)

- Phone the MAWA Office on 9345 0388